Point Mutations in Helicobacter pylori's fur Regulatory Gene that Alter Resistance to Metronidazole, a Prodrug Activated by Chemical Reduction
نویسندگان
چکیده
BACKGROUND Helicobacter pylori's Fur regulatory protein controls transcription of dozens of genes in response to iron availability, acidity and oxidative stress, and affects the vigor of infection and severity of disease. It is unusual among Fur family proteins in being active both when iron-loaded and iron-free. METHOLODOLGY/PRINCIPAL FINDINGS: We tested if H. pylori fur mutations could affect resistance to metronidazole (Mtz), an anti-H. pylori prodrug rendered bactericidal by chemical reduction. Point mutations were made by PCR in DNA containing fur and a downstream chloramphenicol resistance gene, and were placed in the H. pylori chromosome by transformation of a fur-deletion (Δfur) strain. Several substitutions affecting H. pylori Fur's ∼10 residue N terminal arm, which has no counterpart in prototype (E. coli-type) Fur proteins, increased Mtz resistance, as did mutations affecting the region between DNA binding and dimerization domains. Three types of mutations decreased resistance more than did Δfur: substitutions affecting the N-terminal arm; substitutions affecting the metal binding pocket; and nonsense mutations that resulted in a truncated Fur protein with no C-terminal dimerization domain. Most metal binding pocket mutations were obtained only in fur genes with additional inactivating mutations, and thus seemed deleterious or lethal because they. CONCLUSIONS/SIGNIFICANCE These results establish that H. pylori Fur's distinctive N terminal arm is functional, and more generally illustrate that point mutations can confer informative phenotypes, distinct from those conferred by null mutations. We propose that fur mutations can affect Mtz susceptibility by altering the balance among Fur's several competing activities, and thereby the expression of genes that control cellular redox potential or elimination of bactericidal Mtz activation products. Further analyses of selected mutants should provide insights into Fur interactions with other cellular components, metabolic circuitry, and how H. pylori thrives in its special gastric niche.
منابع مشابه
Investigation of frxA gene mutations in metronidazole resistant Helicobacter pylori strains in Tabriz City
Background: Due to the high rate of Helicobacter pylori infection in our country and its treatment failure, and also because of the high prevalence of antibiotic resistance of this bacterium, evaluating causes of Helicobacter pylori resistance to metronidazole and its effect on the therapeutic course is necessary. Materials and methods: A biopsy sample was obtained from 275 suspected patients r...
متن کاملDetection of A2142C, A2142G, and A2143G Mutations in 23s rRNA Gene Conferring Resistance to Clarithromycin among Helicobacter pylori Isolates in Kerman, Iran
Background: Clarithromycin resistance in Helicbacter pylori has been found to be associated with point mutations in 23s rRNA gene leads to reduced affinity of the antibiotic to its ribosomal target or changing the site of methylation. The aim of this study was to determine the most important point mutations in 23s rRNA gene in H. pylori that are closely related to clarith-romycin resistance amo...
متن کاملA redox basis for metronidazole resistance in Helicobacter pylori.
Metronidazole resistance in Helicobacter pylori has been attributed to mutations in rdxA or frxA. Insufficient data correlating RdxA and/or FrxA with the resistant phenotype, and the emergence of resistant strains with no mutations in either rdxA or frxA, indicated that the molecular basis of H. pylori resistance to metronidazole required further characterization. The rdxA and frxA genes of fou...
متن کاملThe allosteric behavior of Fur mediates oxidative stress signal transduction in Helicobacter pylori
The microaerophilic gastric pathogen Helicobacter pylori is exposed to oxidative stress originating from the aerobic environment, the oxidative burst of phagocytes and the formation of reactive oxygen species, catalyzed by iron excess. Accordingly, the expression of genes involved in oxidative stress defense have been repeatedly linked to the ferric uptake regulator Fur. Moreover, mutations in ...
متن کاملFerredoxin Gene Mutation in Iranian Trichomonas vaginalis Isolates
BACKGROUND Trichomonas vaginalis causes trichomoniasis and metronidazole is its chosen drug for treatment. Ferredoxin has role in electron transport and carbohydrate metabolism and the conversion of an inactive form of metronidazole (CO) to its active form (CPR). Ferredoxin gene mutations reduce gene expression and increase its resistance to metronidazole. In this study, the frequency of ferred...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2011